
SOLVING LINEAR SYSTEMS USING SUBSTITUTION

The substitution method is another way to solve a linear system using ALGEBRA! The method requires you to write both equations in the slope *y*-intercept form.

$$y = mx + b$$

Recall: Solving a linear system means finding the POINT OF INTERSECTION.

To find the POINT OF INTERSECTION (x, y): FIRST find the x component (STEP 1) THEN find the y component (STEP 2)

METHOD FOR STEP 1 – finding the x component of the POI (x, y)

- *1* Make sure both equations are in y = mx + b form; if not, rearrange them into this form.
- *2* Both equations equal y, so they are equal to each other! So....set the right side of each equation equal to each other!!!.
- *3* Solve for x.

EXAMPLES: Solve for *x* for the following linear systems:

$$y = 2x + 7$$

$$y = -x - 11$$

$$2x + 7 = -x - 11$$

$$2x + x = -11 - 7$$

$$3x = -18$$

$$3$$

$$x + y = -2$$

$$x - y = 6$$

$$-y = -x + 6$$

$$-y = -x + 6$$

$$-y = -x - 6$$

$$-x - 2 = x - 6$$

$$-x - 2 = -6 + 2$$

$$-2x = -4$$

$$6x + 2y = 12$$

$$4x - y = 5$$

$$-y = -4x + 5$$

$$-1 = -1$$

$$y = 4x - 5$$

$$4x - 5 = -3x + 6$$

$$4x + 3x = 6 + 5$$

$$7x = 11$$

$$7$$

$$x = 11$$

METHOD FOR STEP 2 – finding the y component of the POI (x, y)

- *1* Use the equation of the line in the y = mx + b form
- *2* Substitute the value of x (from STEP 1) into that equation
- *3* Solve for y

EXAMPLES - Solve the following equations by substituting in for the x value

a)
$$y = x + 5$$
 when $x = 2$

$$y=(2)+5$$

$$y=7$$

b)
$$y = 6x - 3$$
 when $x = -5$

$$y = 6(-5) - 3$$

c)
$$y = 3x + 8$$
 when $x = 7$

$$y = 3(7) + 8$$

 $y = 21 + 8$
 $|y = 29|$

d)
$$y = -9x - 25$$
 when $x = -4$

$$y = -9(-4) - 25$$

 $y = 36 - 25$
 $y = 11$